Exact Inference in Networks with Discrete Children of Continuous Parents
نویسندگان
چکیده
Many real life domains contain a mixture of discrete and continuous variables and can be modeled as hybrid Bayesian Networks (BNs). An important subclass of hybrid BNs are conditional linear Gaussian (CLG) networks, where the conditional distribution of the continuous variables given an assignment to the discrete variables is a multivariate Gaussian. Lauritzen’s extension to the clique tree algorithm can be used for exact inference in CLG networks. However, many domains include discrete variables that depend on continuous ones, and CLG networks do not allow such dependencies to be represented. In this paper, we propose the first “exact” inference algorithm for augmented CLG networks — CLG networks augmented by allowing discrete children of continuous parents. Our algorithm is based on Lauritzen’s algorithm, and is exact in a similar sense: it computes the exact distributions over the discrete nodes, and the exact first and second moments of the continuous ones, up to inaccuracies resulting from numerical integration used within the algorithm. In the special case of softmax CPDs, we show that integration can often be done efficiently, and that using the first two moments leads to a particularly accurate approximation. We show empirically that our algorithm achieves substantially higher accuracy at lower cost than previous algorithms for this task.
منابع مشابه
Inference in Hybrid Bayesian Networks Using Mixtures of Gaussians
The main goal of this paper is to describe a method for exact inference in general hybrid Bayesian networks (BNs) (with a mixture of discrete and continuous chance variables). Our method consists of approximating general hybrid Bayesian networks by a mixture of Gaussians (MoG) BNs. There exists a fast algorithm by Lauritzen-Jensen (LJ) for making exact inferences in MoG Bayesian networks, and t...
متن کاملA Variational Approximation for Bayesian Networks with Discrete and Continuous Latent Variables
We show how to use a variational approximation to the logistic function to perform approximate inference in Bayesian networks containing discrete nodes with continuous parents. Essentially, we convert the logistic function to a Gaussian, which facilitates exact inference, and then iteratively adjust the variational parameters to improve the quality of the approximation. We demonstrate experimen...
متن کاملA MODEL FOR MIXED CONTINUOUS AND DISCRETE RESPONSES WITH POSSIBILITY OF MISSING RESPONSES
A model for missing data in mixed binary and continuous responses, which can be used on cross-sectional data, is presented. In this model response indicator for the binary response can be dependent on the continuous response. A closed form for the likelihood is found. For data with a complicated pattern of missing responses some new residuals are also proposed. The model of multiplicative heter...
متن کاملHybrid Bayesian Networks with Linear Deterministic Variables
When a hybrid Bayesian network has conditionally deterministic variables with continuous parents, the joint density function for the continuous variables does not exist. Conditional linear Gaussian distributions can handle such cases when the continuous variables have a multi-variate normal distribution and the discrete variables do not have continuous parents. In this paper, operations require...
متن کاملExpectation Propagation for Continuous Time Bayesian Networks
Continuous time Bayesian networks (CTBNs) describe structured stochastic processes with finitely many states that evolve over continuous time. A CTBN is a directed (possibly cyclic) dependency graph over a set of variables, each of which represents a finite state continuous time Markov process whose transition model is a function of its parents. As shown previously, exact inference in CTBNs is ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2001